Multi-class Image Classification - Sparsity does it Better

نویسندگان

  • Sean Ryan Fanello
  • Nicoletta Noceti
  • Giorgio Metta
  • Francesca Odone
چکیده

It is well assessed that sparse representations improve the overall accuracy and the systems performances of many image classification problems. This paper deals with the problem of finding sparse and discriminative representations of images in multi-class settings. We propose a new regularized functional, which is a modification of the standard dictionary learning problem, designed to learn one dictionary per class. With this new formulation, while positive examples are constrained to have sparse descriptions, we also consider a contribution from negative examples which are forced to be described in a denser and smoother way. The descriptions we obtain are meaningful for a given class and highly discriminative with respect to other classes, and at the same time they guarantee real-time performances. We also propose a new approach to the classification of single image features which is based on the dictionary response. Thanks to this formulation it is possible to directly classify local features based on their sparsity factor without losing statistical information or spatial configuration and being more robust to clutter and occlusions. We validate the proposed approach in two image classification scenarios, namely single instance object recognition and object categorization. The experiments show the effectiveness in terms of performances and speak in favor of the generality of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

A Direct Approach to Multi-class Boosting and Extensions

Boosting methods combine a set of moderately accurate weak learners to form a highly accurate predictor. Despite the practical importance of multi-class boosting, it has received far less attention than its binary counterpart. In this work, we propose a fully-corrective multi-class boosting formulation which directly solves the multi-class problem without dividing it into multiple binary classi...

متن کامل

Robust Hyperspectral Image Classification by Multi-Layer Spatial-Spectral Sparse Representations

Sparse representation (SR)-driven classifiers have been widely adopted for hyperspectral image (HSI) classification, and many algorithms have been presented recently. However, most of the existing methods exploit the single layer hard assignment based on class-wise reconstruction errors on the subspace assumption; moreover, the single-layer SR is biased and less stable due to the high coherence...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013